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Abstract. We give a rigorous proof of the existence of spontaneous magnetization at finite
temperature for classical spin models ontransient on the average(TOA) graphs, i.e. graphs where
a random walker returns to its starting point with an average probabilityF̄ < 1. The proof holds
for models withO(n) symmetry withn > 1, therefore including the Ising model as a particular
case. This result, together with the generalized Mermin–Wagner theorem, completes the picture of
phase transitions for continuous symmetry models on graphs and leads to a natural classification
of general networks in terms of the two geometricalsuperuniversality classesof recursive on the
averageandtransient on the average.

1. Introduction

The relation between spatial geometry and physical behaviour is a fundamental problem of
modern theoretical physics. The influence of geometry is particularly relevant in statistical
mechanics, where universality in phase transitions and critical phenomena on lattices depends
strongly on large-scale topology. The most general and rigorous results concern the existence
itself of spontaneous symmetry breaking. As for a discrete symmetry model, spontaneous
magnetization occurs if and only if the Euclidean dimensiond is >1, while for continuous
symmetries the corresponding condition isd > 2. In the latter case, the necessary condition
is proven by the Mermin–Wagner theorem [1, 2], while the sufficient condition is contained in
the Fr̈olich–Simon–Spencer result about the infrared bound [3, 4].

On a lattice this simple and exhaustive picture allows us to classify statistical models in
geometrical superuniversality classesdetermined by the Euclidean dimension.

Euclidean lattices are good models for crystals and for more abstract geometrical objects,
such as discretized flat spacetime. However, most real systems, such as glasses, polymers,
biological systems, fractals, have irregular geometry and cannot be described by lattices. In the
same way, the presence of gravitation leads to curved spacetime, which cannot be represented
by lattices. To describe these more general systems, we have to switch to more general
geometrical structures, namely graphs, which are networks made of points and links.

From this perspective, lattices are a class of graphs characterized by a very peculiar
property: translation invariance. This implies the existence of a reciprocal lattice and of the
Euclidean dimension, the latter being the number of independent generators of the translation
group. The proofs of theorems [1–4] depend strongly on translation invariance and an extension
to generic graphs must involve more general techniques. Recently, progress in the study of
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statistical models on infinite graphs has been achieved exploiting the algebraic approach to
graph topology [5, 6].

The generalization to graphs of the Mermin–Wagner theorem [7, 8] has been a first step to
understand the behaviour of spin models on inhomogeneous structures. There, the necessary
condition for the existence of spontaneous magnetization for continuous symmetry spin models
is given in terms of asymptotic random walks behaviour. In particular, it is proven that ifF̄ , the
average probability of ever returning to the starting point for a walker on the graph, is one, i.e.
the graph isrecurrent on the average(ROA), then no spontaneous magnetization occurs. This
result naturally includes the lattice theorem, since Euclidean lattices in one and two dimensions
turn out to be ROA.

In this work we study the casēF < 1, i.e. transient on the average(TOA) graphs and
we give a proof of the existence of spontaneous magnetization at non-zero temperature for
classical spin models. The result is the inversion of [7] and an extension of [3, 4], since lattices
with d > 2 are TOA graphs. As in the lattice case, the theorem also holds for the Ising model,
providing a first general result for discrete symmetry on graphs.

Since any graph can be classified either as ROA or TOA, this proof, together with theorem
[7], completes the picture for the case of spontaneous breaking of continuous symmetry models
on graphs. In this way we can extend to graphs the concept of geometrical superuniversality
classes. The average recurrence property of random walks provides the link between the
physical behaviour of theO(n) model and the large-scale topology of the discrete space.

In the following section, we introduce the basic graph-theoretical techniques: the algebraic
approach to graph topology, the definition of the thermodynamic limit on infinite graphs, the
random walk problem. Then, in section 2 we defineO(n) models and their thermodynamics
on infinite graphs. In section 4 we prove the existence of spontaneous magnetization forO(n)

models defined on a fundamental class of graphs, called pure TOA. Finally, in section 5 we
extend the proof to all TOA graphs. The mathematical details of the proof will be given in the
appendix.

2. Some mathematical properties of graphs

A graphG is a countable setV of vertices(i) connected pairwise by a setE of unoriented links
(i, j) = (j, i). In physical models vertices usually represent sites, where spins or fields are
defined while links represent the interactions between them. If the setV is finite,G is called
a finite graph and we will denote byN the number of vertices ofG. A subgraphS of G is a
graph whose set of verticesS ⊆ V and whose set of linksE′ ⊆ E.

A path inG is a sequence of consecutive links{(i, k)(k, h) . . . (n,m)(m, j)} and a graph
is said to be connected, if for any two pointsi, j ∈ V there is always a path joining them. In
the following we will consider only connected graphs. Every connected graphG is endowed
with an intrinsic metric generated by the chemical distanceri,j which is defined as the number
of links in the shortest path connecting verticesi andj .

The graph topology can be described algebraically by its adjacency matrixAij given by

Aij =
{

1 if (i, j) ∈ E
0 if (i, j) 6∈ E.

(1)

The Laplacian matrix1ij is defined by

1ij = zi δij − Aij (2)

wherezi =
∑

j Aij , the number of nearest neighbours ofi, is called the coordination number
of i. Here we will consider graphs with bounded connectivity, i.e. with maxi zi <∞.
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1ij is the generalization to graphs of the usual Laplacian on a lattice wherezi = z ∀i.
If G is a finite graph the matrix1ij can be consider as a symmetric operator1 on a finite
N -dimensional vector space.1 is diagonalizable and its spectrum is real, non-negative and
bounded. In particular, 0 is a simple eigenvalue of1ij and it corresponds to the constant
eigenvector. Notice that, while on a regular lattice1 is diagonalized by the Fourier transform,
this is not the case for a generic graph.

A generalization of the adjacency matrixAij is useful in the study of disordered
ferromagnetic models and it is given by the coupling matrixJij :

Jij = Jji =
{
Jij if Aij = 1

0 if Aij = 0.
(3)

If sup(i,j) Jij < ∞ and inf(i,j) Jij > 0, Jij can be regarded as bounded ferromagnetic
interactions between the nearest-neighbour vertices of the graphs. One can then define the
generalized Laplacian

Lij = Ji δij − Jij (4)

whereJi =
∑

j Jij . On a finite graph, if we considerLij as a symmetric operatorL onN -
dimensional vector space, we have thatL has the same properties of1 (2): it is diagonalizable,
its spectrum is real, positive and bounded.

Phase transitions, corresponding to singularities in the free energy of a statistical model,
only occurs in the thermodynamic limit, i.e. on infinite graphs. To define a model on an infinite
graph,G we consider the models defined on a sequence of concentric spheres in the intrinsic
metric, generalizing the usual Van Hove spheres. A generalized Van Hove sphereSo,r ⊂ G of
centreo and radiusr is the subgraph ofG containing alli ∈ G whose distance fromo is6 r
and all the links ofG joining them. We will callNo,r the number of vertices contained inSo,r .
We define the value of any physical quantity on the infinite graphG as the limit forr →∞ of
the corresponding quantity calculated for a model onSo,r . Given a functionφi of the vertices
of G, we define its average valueφ of φi as

φ ≡ lim
r→∞

∑
i∈So,r φi
No,r

. (5)

The measure|S| of a subsetS of V is the average valueχ(S) of its characteristic function
χi(S) defined byχi(S) = 1 if i ∈ S andχi(S) = 0 if i 6∈ S. In an analogous way, we define
the normalized traceTrB of a matrixBij :

TrB ≡ b (6)

wherebi ≡ Bii . It can be shown that ifG satisfies all the conditions listed above, all the average
values are independent of the centre of the spheres sequenceo [11]. The necessary condition
for the thermodynamic limit to be independent of boundary conditions can be expressed as a
geometrical constraint on the large-scale structure ofG. Namely, one must require that

lim
r→∞
|∂So,r |
|So,r | = 0 (7)

where∂So,r is the boundary of the sphereS.
Occurrence of phase transitions depends on large-scale topology. On a lattice, all the

relevant information about it is encoded in the space dimensionalityd. On a graph, where
a direct definition of dimension is lacking, a fundamental tool to characterize large-scale
topology is the long-time asymptotics of random walks.
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Simple discrete time random walks are defined on a graphG by the jumping probabilities
pij between nearest-neighbour sitesi andj , which are expressed in terms of the adjacency
matrix:

pij = Aij

zi
= (Z−1A)ij (8)

whereZij = zi δij . From (8) the probability of reaching int steps sitej starting fromi is
given by

Pij (t) = (pt )ij . (9)

Graph topology deeply affects a conditional probability related toPij , i.e. the probabilityFii(t)
of returning to the starting pointi for the first time aftert steps. The relation between the two
probabilities can be expressed simply in terms of their generating functionsP̃i(λ) andF̃i(λ)
defined by

P̃i(λ) =
∞∑
t=0

λtPii(t) F̃i(λ) =
∞∑
t=0

λtFii(t). (10)

By standard Markov chains properties one obtains

F̃i(λ) = P̃i(λ)− 1

P̃i(λ)
. (11)

In particular,F̃i(1) is the probability of ever returning to the starting pointi and it only depends

on graph topology. Its average value over all starting sitesF̄ ≡ limλ→1− F̃ (λ) classifies all
graphs in two families, which we will callrecurrent on the averageand transient on the
average. A graph is said to be ROA if̄F = 1 and TOA in the opposite case, i.e. ifF̄ < 1.

When dealing with thermodynamic properties one is forced to consider only the average
value of Fi over all starting points of the graphs. Indeed, the standard mathematical
classification of infinite graphs into (locally) transient and recursive, based on the condition
Fi = 1 (for at least onei and therefore for alli) does not coincide with that based on average
values: locally transient graphs can be recurrent on the average [7, 9, 10].

The TOA family must be further divided into two subfamilies: pure TOA and mixed TOA.
A TOA graph is pure if the average value ofF̃i(1) is < 1 on every positive measure subset
S ⊂ V :

lim
λ→1−

χ(S)F̃ (λ)

|S| < 1 ∀S ⊂ V |S| > 0. (12)

When condition (12) is not satisfied, i.e. there exists a subsetR of V where the average
value of F̃ii is 1, the graph is said to be a mixed TOA. In this caseG can be decomposed
into a pure TOA subgraphS and a ROA subgraph̄S by cutting a zero measure set of links
∂(S, S̄) ≡ {(i, j) ∈ E |i ∈ S ∧ j ∈ S̄} [11].

This classification has a deep geometrical origin and it is left invariant by a redefinition
of jumping probabilities in terms of the bounded interaction matrixJij [9], i.e. by considering
a rescaled set ofpij obtained by replacingAij with Jij in (8):

pij = Jij

Ji
. (13)

On a pure TOA graph, the following fundamental properties holds, which we will call
infrared boundedness[11]:

lim
µ→0

Tr(L +µ)−1 = v <∞ (14)
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whereµ > 0, while on ROA and mixed TOA one has

lim
µ→0

Tr(L +µ)−1 = ∞. (15)

Our result on the magnetization bound is based on the infrared boundedness property (14).

3. Classical spin models on graphs

Classical spin models are classified according to the symmetry of the Hamiltonian. The typical
symmetry can be described by theO(n) group, for integern > 1. The simplest Hamiltonian
satisfying this symmetry can be written as

H = − 1
2

∑
ij

Jij Eσi · Eσj − Eh
∑
i

Eσi (16)

whereJij is a bounded ferromagnetic interaction matrix on the graphG andEσi ≡ (σ 1
i , . . . , σ

n
i )

aren-dimensional real vectors defined on every vertex with the constraint

Eσ 2
i = 1 ∀i. (17)

Whenn = 1,H describes an Ising model, with a discreteZ2 symmetry, while forn > 2H
represents a model with continuous symmetry. The external magnetic fieldEh is chosen to be
along the 1 direction:Eh = (h, 0, . . . ,0); h > 0.

By (17)H can be rewritten in the following form which differs from (16) only by an
additive constant:

H = 1
4

∑
ij

Jij (Eσi − Eσj )2 − Eh
∑
i

Eσi = 1
2

∑
ij

Lij Eσi Eσj − Eh
∑
i

Eσi (18)

whereL is the Laplacian operator (4).
In the canonical Boltzmann ensemble, each configuration{Eσi} has the statistical weight

exp[−βH(Eσi, Eh)] whereβ = 1/kT . The free energyf of the model in the thermodynamic
limit is defined by

f ≡ − lim
r→∞

1

βNo,r
ln
∫ ∏

i∈So,r
dEσi δ(Eσ 2

i − 1) e−βHr ({Eσi },h) (19)

whereHr is the restriction of the Hamiltonian (18) to the subgraphSo,r .
The order parameter is the average magnetization along theEh direction:

M(β, h) ≡ lim
r→∞

1

No,r

∑
i∈So,r
〈σ 1
i 〉 ≡ 〈σ 1〉 (20)

where the brackets denote the thermal average. One then obtains

M(β, h) = lim
r→∞

1

No,r

∫ ∏
i∈So,r dEσi δ(Eσ 2

i − 1)
(∑

i∈So,r σ
1
i

)
e−βHr∫ ∏

i∈So,r dEσi δ(Eσ 2
i − 1) e−βHr

. (21)

On graphs the order parameter must be an average quantity. Local definitions as〈σi〉 or
lim ri,j→∞〈σi · σj 〉, which on lattices are equivalent to (20), on inhomogeneous structures can
give ambiguous results in different sites and in general they are not equivalent to (20), which
is the only definition that describes the global behaviour of the model.

In the next sections, we will show that on TOA graphs for small enough temperature we
have

lim
h→0

M(β, h) > c(β) > 0. (22)

The bound onM(h, β) (equation (22)), proves the existence of spontaneous symmetry breaking
in O(n) models.
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4. The pure case

Let us consider first a model defined on a pure TOA graph. The bound on the magnetization
(22) is obtained according to the following steps:

(a) we introduce for the constraint (17) an integral representation using new variables, the
Lagrange multipliersαi . Substituting the integral representation in the expressions of the
magnetization (21) and in the identity

1= 1

No,r

∫ ∏
i∈Sor dEσi

∑
j∈Sor Eσ 2

j e−βHr
∏
k∈Sor δ(Eσ 2

k − 1)∫ ∏
i∈Sor dEσi e−βHr

∏
k∈Sor δ(Eσ 2

k − 1)
(23)

we can perform the Gaussian integral with respect to the spin variablesEσi ;
(b) we determine the asymptotic behaviour of the integrals overαi for β →∞ by a saddle-

point technique.
(c) we prove two basic inequalities for the inverse of the Laplacian matrix, which will be used

to compare the value of the magnetization with the expression given by (23).

Let us start with point (a) of our proof, writing the spherical constraint with the complex
integral representation of the delta function:

δ(Eσ 2
i − 1) = eε/2

2π

∫
dαi exp(−iαi(Eσ 2

i − 1)/2− ε Eσ 2
i /2) (24)

whereε is a real arbitrary constant. We will choseε = hβ. Substituting expression (24) for
δ(Eσ 2

i − 1) in (21) and in (23) evaluated on the finite subgraphSo,r , we obtain

Mr(h) = 1

No,r

∫ ∏
k∈So,r dEσk

∫ +∞
−∞

∏
j∈So,r dαj gβ,h(σ, α)

(∑
i∈So,r σ

1
i

)∫ ∏
k∈So,r dEσk

∫ +∞
−∞

∏
j∈So,r dαj gβ,h(σ, α)

1= 1

No,r

∫ ∏
k∈So,r dEσk

∫ +∞
−∞

∏
j∈So,r dαj gβ,h(σ, α)

(∑
i∈So,r Eσ 2

i

)∫ ∏
k∈So,r dEσk

∫ +∞
−∞

∏
j∈So,r dαj gβ,h(σ, α)

where

gβ,h(σ, α) = exp

(
−β

(
1
2

∑
ij

Lij Eσi Eσj − h
∑
i

σ 1
i

)
− 1

2

∑
i

(iαi(Eσ 2
i − 1)− hβ Eσ 2

i )

)
.

Rescaling in both integralαi byβαi andEσi by Eσi/
√
β, we can perform the Gaussian integration

on the variablesEσi obtaining

Mr(h) = 1

Z

∫
dµβ,h(α)

h

No,r

∑
kj

(L +H + iα)−1
kj (25)

1= 1

Z

∫
dµβ,h(α)

n

βNo,r
Tr(L +H + iα)−1 +

h2

No,r

∑
ij

(L +H + iα)−2
ij (26)

where dµβ,h(α) is a measure on the space of the Lagrange multipliersαi given by:

dµβ,h(α) =
∏
i∈So,r

dαi exp

(
− 1

2nTr(ln(L +H + iα))

+1
2β

(
i
∑
i

αi + h2
∑
ij

(L +H + iα)−1
ij

))
(27)
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and

Z =
∫

dµβ,h(αi) (28)

with Hij = hδij andαij = αiδij . Expressions (25) and (26) are the statistical averages of the
quantitiesh

∑
kj (L +H + iα)−1

kj andn/β Tr(L+H +iα)−1+h2∑
ij (L+H +iα)−2

ij with respect
to the measure (27). Notice that the order of the symmetry groupn becomes a parameter of
the integration.

Let us consider our model in the very low-temperature region, that is point (b) of our
proof. Whenβ → ∞, integrals (25) and (26) can be studied by a saddle-point technique.
In particular, we have that the leading asymptotic behaviour is given by theᾱi for which is
stationary the quantity: i

∑
i ᾱi + h2∑

ij (L +H + iᾱ)−1
ij . Then theᾱi satisfy the equations:

∂

∂ᾱi

[
i
∑
k

ᾱk + h2
∑
kj

(L +H + iᾱ)−1
kj

]
= 0 ∀i (29)

whereᾱij = ᾱiδij . In appendix A we will show that conditions (29) are satisfied for all values
of h > 0 if and only if ᾱi = 0 ∀ i. Now we can separate integrals (25) and (26) into two parts:
one is given by the integration in a small region0 around the stationary pointᾱi (the leading
contribution) and the other is the integration over the complement of0. The latter vanishes
for β →∞. We obtain

Mr(h) = 1

Z′

∫
0

Re[dµβ,h(α)]
h

No,r

∑
kj

(L +H + iα)−1
kj + o(1/β) (30)

1= 1

Z′

∫
0

Re[dµβ,h(α)]

[
n

βNo,r
Tr(L +H + iα)−1 +

h2

No,r

∑
ij

(L +H + iα)−2
ij

]
+ o(1/β)

(31)

where0 is the region around the saddle pointᾱi in which Re(exp(iSβh(α))) > 0 and
Z′ = ∫

0
Re[dµβ,h(α)]. Here we have exploited the fact that, since the measure dµβ,h(α)

is real and positive at the stationary pointᾱi , the imaginary part of dµβ,h(α) gives a subleading
contribution to integrals (30) and (31). NowM(h) and 1 are real quantities so we have

Mr(h) = 1

Z′

∫
0

Re[dµβ,h(α)]
h

No,r
Re

[∑
kj

(L +H + iα)−1
kj

]
+ o(1/β) (32)

1= 1

Z′

∫
0

Re[dµβ,h(α)] Re

[
n

βNo,r
Tr(L +H + iα)−1 +

h2

No,r

∑
ij

(L +H + iα)−2
ij

]
+ o(1/β).

(33)

As for (c) we introduce on a finite graph the following inequalities which will be proven
in appendix B exploiting the boundedness and the non-negativity of the Laplacian operator:

Re

[
h
∑
ij

(L +H + iα)−1
ij

]
> Re

[
h2
∑
ij

(L +H + iα)−2
ij

]
(34)

Re[Tr(L +H + iα)−1] 6 Tr(L +H)−1. (35)

In (32) and (33) the measure is positive definite and therefore we can use (34) to compare
integrals (32) and (33), obtaining

Mr(h) >
1

Z′

∫
0

Re[dµβ,h(α)] Re

[
h2

No,r

∑
ij

(L +H + iα)−2
ij

]
+ o(1/β)

> 1− o(1/β)− 1

Z′

∫
0

Re[dµβ,h(α)] Re

[
n

βNo,r
Tr(L +H + iα)−1

]
. (36)
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Using (35), we obtain forMr(h) the following inequality:

Mr(h) > 1− o(1/β)− 1

βNo,r
Tr(L +H)−1. (37)

Inequality (37) holds on the finite subgraphSo,r and at this step we can take the thermodynamic
limit, letting r →∞:

lim
r→∞Mr(h) > 1− o(1/β)− 1

β
Tr(L +H)−1. (38)

Finally, we consider the limith→ 0 and, exploiting properties (14) of pure TOA graphs, we
obtain

lim
h→0

M(h) > 1− v

β
− o(1/β). (39)

This inequality gives the lower magnetization bound for pure TOA graphs.

5. The mixed TOA case

Let us now consider anO(n) model defined on a mixed TOA graph. In this case the
graphG can be decomposed into a pure TOA subgraphS, therefore satisfying the infrared
boundedness condition (14), and its complementS̄, which is a ROA graph. Exploiting the
property|∂(S, S̄)| = 0, in appendix C is proven for the free energy per sitef that

f = |S|fS + |S̄|fS̄ (40)

wherefS is the free energy of theO(n)model defined on the graphS by the interaction matrix:

J Sij = J Sji =
{
Jij if (i, j) ∈ S andi, j ∈ S
0 otherwise

(41)

and fS̄ is the analogous quantity defined on̄S. Equation (40) is very general and it is
fundamental to show that all the thermodynamic properties of models defined on subgraphs
separated by zero measure boundary are completely independent. From (40) we obtain for the
magnetization

M(h) = −∂f
∂h
= −|S|∂fS

∂h
− |S̄|∂fS̄

∂h
= |S|MS + |S̄|MS̄ (42)

whereMS andMS̄ are the magnetizations of the models defined onS andS̄. From Griffith’s
inequalities [12] we have thatMS̄ > 0 and then

M(h) > |S|MS . (43)

Now,MS is the magnetization of anO(n) model defined on a pure TOA graph and therefore
the inequality (39) holds. We then obtain

lim
h→0

M(h) > |S| − v
′

β
− o(1/β). (44)

SinceS is a positive measure subgraph, equation (44) proves the lower bound onM(h) for a
generic TOA graph.
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Appendix A. The saddle-point condition

Let us now prove that the saddle-point conditions (29) are satisfied for eachi only if αk = 0 ∀k.
Herei ∈ So,r andLij is the restriction of the Laplacian to the Van Hove sphereSo,r .

Taking in (29) the derivative with respectαi , we obtain

i − ih2
∑
klmj

(L +H + iᾱ)−1
kl δliδm,i(L +H + iᾱ)−1

mj = 0 (A1)

where we used the fact that∂(ᾱlm)/∂ᾱi = δliδmi . Then we have

1= h2
∑
kj

(L +H + iᾱ)−1
ki (L +H + iᾱ)−1

ij =
(
h
∑
k

(L +H + iᾱ)−1
ki

)2

. (A2)

Taking the square roots:

±1= h
∑
k

(L +H + iᾱ)−1
ki (A3)

since only the choice of the sign + in each equation gives a solution with realαi , we obtain

1= h
∑
k

(L +H + iᾱ)−1
ki . (A4)

Now (A4) must hold for alli ∈ So,r so we have that condition (A4) is equivalent to∑
i

(L + iᾱ +H)ij = h
∑
ki

(L +H + iᾱ)−1
ki (L +H + iᾱ)ij ∀j ∈ So,r . (A5)

Since
∑

i Lij = 0,
∑

i ᾱij = ᾱj and
∑

i Hij = h, we have

h + iᾱj = h
∑
k

δkj = h ∀j ∈ So,r . (A6)

Therefore, equation (29) is satisfied for alli if and only if ᾱj = 0 for all j . This proves the
saddle-point condition.

Appendix B. Inequalities

Here, we give the full proof of inequalities (34) and (35). More generally we will show that the
following inequalities hold for any finite graphs, withHij ≡ h δij , h > 0, α ≡ αi δij , αi ∈ R
andφi ∈ R ∀i:
06 Re

(∑
ij

φi(L +H + iα)−1
ij φj

)
6
∑
ij

φi(L +H)−1
ij φj 6 h−1

∑
i

φ2
i (B7)

Im

(∑
ij

φi(L +H + iα)−1
ij φj

)
6 1

2

∑
ij

φi(L +H)−1
ij φj (B8)

Re

(
h2
∑
ij

(L +H + iα)−2
ij φiφj

)
6 Re

(
h
∑
ij

(L +H + iα)−1
ij φiφj

)
(B9)

06 h
∑
ikj

φi(L +H − iα)−1
ik (L +H + iα)−1

kj φj 6 Re

(∑
ij

φi(L +H + iα)−1
ij φj

)
. (B10)

When evaluating (B9) forφi = 1∀i we obtain inequality (34), while by considering (B7)
with φi = 1 for i = k andφi = 0 for i 6= k, we have

Re(L +H + iα)−1
kk 6 (L +H)−1

kk .



5548 R Burioni et al

Now we can sum this expression over all possiblek obtaining inequality (35):

Re(Tr(L +H + iα)−1) =
∑
k

Re(L +H + iα)−1
kk 6

∑
k

(L +H)−1
kk = Tr(L +H)−1.

In order to prove inequalities (B7)–(B10) we first introduce theN -dimensional space given
by vectors〈φ| = (φ1, . . . , φN) and|φ〉 = (φ1, . . . , φN)

t with scalar product

〈φ|ψ〉 =
∑
i

φiψi. (B11)

The matricesL,A, h andα are operator on this space. Since the matrixL is diagonalizable by
a real transformation, and its spectruml is positive: 06 l 6 lmax, it can be proven [13] that it
exist a real operatorB which satisfies the following:

Bt(L +H)B = I BtαB = c (B12)

wherec is a real diagonal operator (cij = ciδij ) andI is the identity operator. Furthermore,
we have

(L +H + iα)−1 = B(1 + ic)−1Bt (L +H)−1 = BBt (B13)

‖BtB‖ = 1

h
(B14)

where

‖BtB‖ = sup
φ

〈φ|BtB|φ〉
〈φ|φ〉 .

Properties (B13) directly follow from (B12). Therefore, it is easy to obtain the exact expression
for B:

B = TAT ′

where T is the orthogonal transformation that diagonalizeL; A is the transformation
(1/
√
lk + h)δkm wherelk is the eigenvalue ofL relative to the eigenvectork; finally T ′ is the

orthogonal operator that diagonalize the symmetric matrixAT tαT A. B is not an orthogonal
transformation but its norm can be computed, proving (B14):

‖BtB‖ = sup
φ

〈φ|BtB|φ〉
〈φ|φ〉 = sup

φ

〈φ|A2|φ〉
〈φ|φ〉 =

1

h
.

Let us consider the product〈φ|(L+H +iα)−1|φ〉. Exploiting property (B13) and inequality
(1 + c2

i )
−1 6 1 we have

Re〈|φ(L +H + iα)−1|φ〉 = Re〈φ|B(1 + ic)−1Bt |φ〉
= 〈φ|(B Re(1 + ic)−1Bt)|φ〉
= 〈φ|B(1 + c2)−1Bt |φ〉
6 〈φ|BBt |φ〉.

Now since 06 〈φ|B(1 + c2)−1Bt |φ〉, 〈φ|(L + H)−1|φ〉 = 〈φ|BBt |φ〉 (equation (B13)) and
〈φ|BBt |φ〉 6 h−1〈φ|φ〉 (equation (B14)), we obtain

06 Re〈|φ(L +H + iα)−1|φ〉 6 〈φ|(L +H)−1|φ〉 6 h−1〈φ|φ〉
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which corresponds to (B7). In an analogous way, for the imaginary part we obtain (B8):

| Im〈|φ(L +H + iα)−1|φ〉| = |〈φ|Bc(1 + c2)−1Bt |φ〉|
6 〈φ|B|c|(1 + c2)−1Bt |φ〉
6 1

2〈φ|BBt |φ〉
6 1

2〈φ|(L +H)−1|φ〉
where we used the inequality|ci |(1 + c2

i )
−1 6 1

2. For the proof of (B9) we have

Re〈φ|h2(L +H + iα)−2|φ〉 = Reh2〈φ|B(1 + ic)−1BtB(1 + ic)−1Bt |φ〉
= h2〈φ|B(Re(1 + ic)−1)BtB(Re(1 + ic)−1)Bt |φ〉
−h2〈φ|B(Im(1 + ic)−1)BtB(Im(1 + ic)−1)Bt |φ〉
6 h2〈φ|B(Re(1 + ic)−1)BtB(Re(1 + ic)−1)Bt |φ〉
6 h〈φ|B(Re(1 + ic)−1)(Re(1 + ic)−1)Bt |φ〉
6 h〈φ|B(1 + c2)−2Bt |φ〉
6 h〈φ|B(1 + c2)−1Bt |φ〉 = h〈φ|(L +H)−1|φ〉

where we used properties (B13), (B14) and(1 + c2
i )
−2 6 (1 + c2

i )
−1. Finally, to obtain (B10)

we have

06 h〈φ|(L +H − iα)−1(L +H + iα)−1|φ〉 = h〈φ|B(1− ic)−1BtB(1 + ic)−1Bt |φ〉
6 〈φ|B(1− ic)−1(1 + ic)−1Bt |φ〉
6 〈φ|B(1 + c2)−1Bt |φ〉 = Re〈φ|(L +H + iα)−1|φ〉

and this completes the proof of inequalities (B7)–(B10).

Appendix C. Separability and the additivity of the free energy

In this last appendix we will prove the property (40) for the free energy of anO(n) model
when the complementary subgraphsS andS̄ are connected by a zero-measure border∂(S, S̄).

From the definition of the free energy (19) we have that

fG − |S|fS − |S̄|fS̄ = lim
r→∞

1

βNo,r

× ln

∫ ∏
i∈So,r dEσi δ(Eσ 2

i − 1) exp
(−β(Hr,S +Hr,S̄ +

∑
(i,j)∈So,r∩∂(S,S̄) Jij σi · σj )

)∫ ∏
i∈So,r dEσi δ(Eσ 2

i − 1) exp(−β(Hr,S +Hr,S̄))

= lim
r→∞

1

βNo,r
ln

〈
exp

(
−β

∑
(i,j)∈So,r∩∂(S,S̄)

Jij σi · σj
)〉′

(C15)

whereHr,S andHr,S̄ are the restrictions ofH to the intersections ofSo,r with S and S̄ and
〈 〉′ is an average taken with respect the statistical weight exp(−β(Hr,S + Hr,S̄)). Since the
symmetry groupO(n) is compact (|σi · σj )| 6 1) we have that

− sup
(i,j)

Jij |∂(S, S̄)|r 6
∑

(i,j)∈So,r∩∂(S,S̄)
Jij σi · σj 6 sup

(i,j)

Jij |∂(S, S̄)|r (C16)

where|∂(S, S̄)|r is the number of links of∂(S, S̄) which belong to the Van Hove sphereSo,r .
Now with (C15) and (C16) we obtain

lim
r→∞

1

βNo,r
ln
(
e−β sup(i,j) Jij |∂(S,S̄)|r ) 6 fG − |S|fS − |S̄|fS̄ 6 lim

r→∞
1

βNo,r
ln
(
eβ sup(i,j) Jij |∂(S,S̄)|r )

(C17)
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and then

lim
r→∞−β sup

(i,j)

Jij
|∂(S, S̄)|r
No,r

6 fG − |S|fS − |S̄|fS̄ 6 lim
r→∞β sup

(i,j)

Jij
|∂(S, S̄)|r
No,r

. (C18)

Since the measure of the boundary∂(S, S̄) is zero we have that limr→∞ |∂(S, S̄)|r/No,r = 0
and therefore we obtainfG − |S|fS − |S̄|fS̄ = 0, that is equation (40). Notice that this result
is very general and it exploits only the fact that the symmetry group is compact and that the
interactions are bounded.

References

[1] Mermin N D and Wagner H 1966Phys. Rev.171133
[2] Mermin N D 1967J. Math. Phys.8 1061
[3] Froelich J, Simon B and Spencer T 1976Phys. Rev. Lett.36804
[4] Froelich J, Simon B and Spencer T 1976Commun. Math. Phys.5079
[5] Alexander S and Orbach R 1982J. Physique Lett.43L625
[6] Hattori K, Hattori T and Watanabe H 1987Prog. Theor. Phys. Suppl.92108
[7] Cassi D 1992Phys. Rev. Lett.683631

Cassi D 1996Phys. Rev. Lett.762941
[8] Merkl F and Wagner H 1994J. Stat. Phys.75153
[9] Burioni R and Cassi D 1996Phys. Rev. Lett.761091

Burioni R and Cassi D 1997Mod. Phys. Lett.B 111095
[10] Burioni R, Cassi D and Regina S 1996Mod. Phys. Lett.B 101059
[11] Burioni R, Cassi D and Vezzani A submitted
[12] Glimm J and Jaffe A 1987Quantum Physics: A Functional Integral Point of View(New York: Springer)
[13] Gantmacher R F 1959The Theory of Matrices(New York: Chelsea)


