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Abstract. We give a rigorous proof of the existence of spontaneous magnetization at finite
temperature for classical spin modelstmansient on the averag@ OA) graphs, i.e. graphs where

a random walker returns to its starting point with an average probalility 1. The proof holds

for models withO (n) symmetry withn > 1, therefore including the Ising model as a particular
case. This result, together with the generalized Mermin—Wagner theorem, completes the picture of
phase transitions for continuous symmetry models on graphs and leads to a natural classification
of general networks in terms of the two geometrisaperuniversality classesf recursive on the
averageandtransient on the average

1. Introduction

The relation between spatial geometry and physical behaviour is a fundamental problem of
modern theoretical physics. The influence of geometry is particularly relevant in statistical
mechanics, where universality in phase transitions and critical phenomena on lattices depends
strongly on large-scale topology. The most general and rigorous results concern the existence
itself of spontaneous symmetry breaking. As for a discrete symmetry model, spontaneous
magnetization occurs if and only if the Euclidean dimensiois >1, while for continuous
symmetries the corresponding condition/is- 2. In the latter case, the necessary condition

is proven by the Mermin—Wagner theorem [1, 2], while the sufficient condition is contained in
the FBlich—Simon—-Spencer result about the infrared bound [3, 4].

On a lattice this simple and exhaustive picture allows us to classify statistical models in
geometrical superuniversality classgstermined by the Euclidean dimension.

Euclidean lattices are good models for crystals and for more abstract geometrical objects,
such as discretized flat spacetime. However, most real systems, such as glasses, polymers,
biological systems, fractals, have irregular geometry and cannot be described by lattices. Inthe
same way, the presence of gravitation leads to curved spacetime, which cannot be represented
by lattices. To describe these more general systems, we have to switch to more general
geometrical structures, namely graphs, which are networks made of points and links.

From this perspective, lattices are a class of graphs characterized by a very peculiar
property: translation invariance. This implies the existence of a reciprocal lattice and of the
Euclidean dimension, the latter being the number of independent generators of the translation
group. The proofs of theorems [1-4] depend strongly on translation invariance and an extension
to generic graphs must involve more general techniques. Recently, progress in the study of
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statistical models on infinite graphs has been achieved exploiting the algebraic approach to
graph topology [5, 6].

The generalization to graphs of the Mermin—Wagner theorem [7, 8] has been a first step to
understand the behaviour of spin models on inhomogeneous structures. There, the necessary
condition for the existence of spontaneous magnetization for continuous symmetry spin models
is given in terms of asymptotic random walks behaviour. In particular, it is proven thattie
average probability of ever returning to the starting point for a walker on the graph, is one, i.e.
the graph isecurrent on the averagdROA), then no spontaneous magnetization occurs. This
result naturally includes the lattice theorem, since Euclidean lattices in one and two dimensions
turn out to be ROA.

In this work we study the casgé < 1, i.e.transient on the averagfl OA) graphs and
we give a proof of the existence of spontaneous magnetization at non-zero temperature for
classical spin models. The resultis the inversion of [7] and an extension of [3, 4], since lattices
with d > 2 are TOA graphs. As in the lattice case, the theorem also holds for the Ising model,
providing a first general result for discrete symmetry on graphs.

Since any graph can be classified either as ROA or TOA, this proof, together with theorem
[7], completes the picture for the case of spontaneous breaking of continuous symmetry models
on graphs. In this way we can extend to graphs the concept of geometrical superuniversality
classes. The average recurrence property of random walks provides the link between the
physical behaviour of the (n) model and the large-scale topology of the discrete space.

Inthe following section, we introduce the basic graph-theoretical techniques: the algebraic
approach to graph topology, the definition of the thermodynamic limit on infinite graphs, the
random walk problem. Then, in section 2 we def®é:) models and their thermodynamics
on infinite graphs. In section 4 we prove the existence of spontaneous magnetizatxn for
models defined on a fundamental class of graphs, called pure TOA. Finally, in section 5 we
extend the proof to all TOA graphs. The mathematical details of the proof will be given in the
appendix.

2. Some mathematical properties of graphs

A graphg is a countable sét of vertices(i) connected pairwise by a sEtof unoriented links

@i, j) = (j,1). In physical models vertices usually represent sites, where spins or fields are
defined while links represent the interactions between them. If thg gefinite, G is called

a finite graph and we will denote by the number of vertices @j. A subgraphS of G is a
graph whose set of verticssC V and whose set of link&” C E.

A path ing is a sequence of consecutive links, k)(k, k) ... (n,m)(m, j)} and a graph
is said to be connected, if for any two poimfg € V there is always a path joining them. In
the following we will consider only connected graphs. Every connected gfaplendowed
with an intrinsic metric generated by the chemical distafngavhich is defined as the number
of links in the shortest path connecting verti¢emnd ;.

The graph topology can be described algebraically by its adjacency ratrijven by

1 if @, j)eE
0 if @i, j)¢E.
The Laplacian matrix;; is defined by

Aij =Z (Sij _Aij (2)
wherez; = Zj A;;, the number of nearest neighbours ois called the coordination number
of i. Here we will consider graphs with bounded connectivity, i.e. with,max oco.

Ajj = 1)
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A;; is the generalization to graphs of the usual Laplacian on a lattice whetrez Vi.
If G is a finite graph the matrix\;; can be consider as a symmetric operatoon a finite
N-dimensional vector space\ is diagonalizable and its spectrum is real, non-negative and
bounded. In particular, O is a simple eigenvalueAgf and it corresponds to the constant
eigenvector. Notice that, while on a regular lattités diagonalized by the Fourier transform,
this is not the case for a generic graph.

A generalization of the adjacency matrik; is useful in the study of disordered
ferromagnetic models and it is given by the coupling maffjx

PR FE AVES .
YT o if A =0.

If sup, ;, Jij < oo and inf; ;) Ji; > 0, J;; can be regarded as bounded ferromagnetic
interactions between the nearest-neighbour vertices of the graphs. One can then define the
generalized Laplacian

Lij=Jiéij— Jij 4)

whereJ; = Zj Jij. On afinite graph, if we considdr;; as a symmetric operatdr on N-
dimensional vector space, we have thdttas the same propertiesf(2): itis diagonalizable,
its spectrum is real, positive and bounded.

Phase transitions, corresponding to singularities in the free energy of a statistical model,
only occurs in the thermodynamic limit, i.e. on infinite graphs. To define a model on an infinite
graph,G we consider the models defined on a sequence of concentric spheres in the intrinsic
metric, generalizing the usual Van Hove spheres. A generalized Van Hove sphereg of
centreo and radius- is the subgraph of containing alli € G whose distance fromis < r
and all the links ofj joining them. We will callN,, . the number of vertices containedsp, .

We define the value of any physical quantity on the infinite gr@jals the limit forr — oo of
the corresponding quantity calculated for a modekgn Given a functionp; of the vertices
of G, we define its average valgeof ¢; as

%= lim M (5)
The measuréS| of a subsetS of V is the average valug(S) of its characteristic function
x:(8) defined byy;(§) = 1ifi € Sandy;(S) =0ifi € S. In an analogous way, we define
the normalized tracér B of a matrix B;;:

TrB=b (6)

whereb; = B;;. It can be shown that § satisfies all the conditions listed above, all the average
values are independent of the centre of the spheres sequ§hite The necessary condition

for the thermodynamic limit to be independent of boundary conditions can be expressed as a
geometrical constraint on the large-scale structurg. dflamely, one must require that

. 0S,.r
lim 12%0rl _

r>00 [S,, |

@)

whered S, , is the boundary of the sphefe

Occurrence of phase transitions depends on large-scale topology. On a lattice, all the
relevant information about it is encoded in the space dimensionalit9n a graph, where
a direct definition of dimension is lacking, a fundamental tool to characterize large-scale
topology is the long-time asymptotics of random walks.
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Simple discrete time random walks are defined on a géapirthe jumping probabilities
pi; between nearest-neighbour sifeand j, which are expressed in terms of the adjacency
matrix:

Ajj _
pij = =% = (Z7*A); (8)

whereZ;; = z; 8;;. From (8) the probability of reaching insteps sitej starting fromi is
given by

Pij(t) = (p")ij. )
Graph topology deeply affects a conditional probability relate8} toi.e. the probabilityF;; (1)
of returning to the starting poiritfor the first time after steps. The relation between the two

probabilities can be expressed simply in terms of their generating fundBiehsand F; (1)
defined by

P =) NPty FO) =) MFi@). (10)
t=0 t=0
By standard Markov chains properties one obtains
E() = Aw -1 (11)
P; ()

In particular,F; (1) is the probability of ever returning to the starting paiand it only depends

on graph topology. Its average value over all starting sftes lim,_,1- F()) classifies all
graphs in two families, which we will callecurrent on the averagand transient on the
average A graph is said to be ROA if = 1 and TOA in the opposite case, i.e Af< 1.

When dealing with thermodynamic properties one is forced to consider only the average
value of F; over all starting points of the graphs. Indeed, the standard mathematical
classification of infinite graphs intdogally) transient and recursive, based on the condition
F; = 1 (for at least one and therefore for all) does not coincide with that based on average
values: locally transient graphs can be recurrent on the average [7, 9, 10].

The TOA family must be further divided into two subfamilies: pure TOA and mixed TOA.
A TOA graph is pure if the average value Bf(1) is < 1 on every positive measure subset
ScV:

im XOFQ)

a1 |S|
When condition (12) is not satisfied, i.e. there exists a suBisef V where the average
value of F}; is 1, the graph is said to be a mixed TOA. In this cgsean be decomposed
into a pure TOA subgrapl§ and a ROA subgrap§ by cutting a zero measure set of links
(S, S)={Gl,j) e Eli e SAjeS}[11].

This classification has a deep geometrical origin and it is left invariant by a redefinition
of jumping probabilities in terms of the bounded interaction maijX9], i.e. by considering
arescaled set gf;; obtained by replacing;; with J;; in (8):

Jij
Pij = 71] (13)

On a pure TOA graph, the following fundamental properties holds, which we will call

infrared boundedned41]:

|im0ﬁ(L +u) =0 <00 (14)
n—

1 VSCcV |S|>0. (12)
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whereu > 0, while on ROA and mixed TOA one has
lim Tr(L +p) " = co. (15)

n—0

Our result on the magnetization bound is based on the infrared boundedness property (14).

3. Classical spin models on graphs

Classical spin models are classified according to the symmetry of the Hamiltonian. The typical
symmetry can be described by tB&n) group, for integer > 1. The simplest Hamiltonian
satisfying this symmetry can be written as

Hz—%ZJU&,--&j—EZ& (16)
ij i
whereJ;; is a bounded ferromagnetic interaction matrix on the g@phds; = (o, ..., o))
aren-dimensional real vectors defined on every vertex with the constraint
of=1 Vi 17)

Whenn = 1, H describes an Ising model, with a discretg symmetry, while fom > 21
represents a model with continuous symmetry. The external magnetié figichosen to be
along the 1 directionk = (4,0, ...,0); h > 0.

By (17) H can be rewritten in the following form which differs from (16) only by an
additive constant:

H=3%Y UG —6)2—hY 6:=5Y Ly, —hYy & (18)
ij i ij i

whereL is the Laplacian operator (4).

In the canonical Boltzmann ensemble, each configurdtiphhas the statistical weight
exp[-BH(a;, ﬁ)] whereg = 1/kT. The free energy of the model in the thermodynamic
limit is defined by

. 1 N .
" ,3 o,r i€S,,,

whereH, is the restriction of the Hamiltonian (18) to the subgraph.
The order parameter is the average magnetization alongdirection:
M(B,h) = lim

Jim —=— > (o) = (oh) (20)

T ieS,,

where the brackets denote the thermal average. One then obtains

M(@B,h)=li 1 Jlics,, 901857 — 1)< Dics,, Uil) e A
,h) = lim 7
r—00 No,r f ]_[iES,,, dUi 5(0—[2 _ 1) e—PH,

On graphs the order parameter must be an average quantity. Local definitipns @s
lim,. . (0i - o;), which on lattices are equivalent to (20), on inhomogeneous structures can
give ambiguous results in different sites and in general they are not equivalent to (20), which
is the only definition that describes the global behaviour of the model.

In the next sections, we will show that on TOA graphs for small enough temperature we
have

(21)

lim M(8.h) > c(B) > 0. (22)

The bound o (k, B) (equation (22)), proves the existence of spontaneous symmetry breaking
in O(n) models.
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4. The pure case

Let us consider first a model defined on a pure TOA graph. The bound on the magnetization
(22) is obtained according to the following steps:

(a) we introduce for the constraint (17) an integral representation using new variables, the
Lagrange multipliers;. Substituting the integral representation in the expressions of the
magnetization (21) and in the identity

Lo b JThies, 960 % e, 37 € Thies, 3G — 1) (23)
N”v’ f ]_[ieS,,, dal e Fr l_[keS,),A S(Ekz - 1)
we can perform the Gaussian integral with respect to the spin varighles
(b) we determine the asymptotic behaviour of the integrals evéar 8 — oo by a saddle-
point technique.
(c) we prove two basic inequalities for the inverse of the Laplacian matrix, which will be used
to compare the value of the magnetization with the expression given by (23).

Let us start with point (a) of our proof, writing the spherical constraint with the complex
integral representation of the delta function:

/2
8@F—1) = e;—n / do; exp(—ie; (52 — 1)/2 — €57/2) (24)

wheree is a real arbitrary constant. We will chose= 1. Substituting expression (24) for
8(c? — 1) in (21) and in (23) evaluated on the finite subgraph, we obtain

1 [ ersn, doy f:: HjeSU‘,. doj gp.n(0, ) (ZieS(,., Uil)

M, (h) = 5
No.r f ersm doy f_+§o° Hjesn,, do; gp.n(o, @)
1— 1/ [Tkes,, dox f_+§2 [1jcs,, dojgpn(o, @) (Zies(,_, ?)
No.r f nkes,,,,. doy ff;f H_jesw doj gp.n(0, @)

where
gpu(o, @) = exp(—ﬁ(% > Lij6i5;—h Za}> — 3> (e(G7 -1 — hﬁ&f)).
ij i i

Rescaling in both integra); by B«; anda; by o; /+/B, we can perform the Gaussian integration
on the variables; obtaining

1 h L
M. (h) =~ / duapn(@) 3 ;(L +H +ia)! (25)
’ J
1—1/d (@) —— TH(L + H +ia) "t + B Z(L+H+i )2 (26)
- VA M'BYh * ,BNo,r * N{),r ij * g

where dug (o) is @ measure on the space of the Lagrange multipdiegsven by:

dugn(a) = l_[ do; exp(—%n Tr(n(L + H + i)

€S,

+%,8(iZa,» +h? Y (L +H+ia)ijl)> (27)
i ij
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and
= f dieg.n (o) (28)

with H;; = hé;; ando;; = o [ Expressions (25) and (26) are the statistical averages of the
quantitiesr Y, (L + H +ia),; andn/B Tr(L+H +ia)~ 1+p2 Zij(L+H+ia)i;2 with respect

to the measure (27). Notlce that the order of the symmetry grdogcomes a parameter of
the integration.

Let us consider our model in the very low-temperature region, that is point (b) of our
proof. Wheng — oo, integrals (25) and (26) can be studied by a saddle-point technique.
In particular, we have that the Ieading asymptotic behaviour is given by;tfa which is
stationary the quantity: Y, &; + h? Z (L +H +ia); 1. Then they; satisfy the equations:

8—_[i Z&k + hZZ(L +H + i&)kﬂ =0 Vi (29)
@i L kK

wherea;; = &;é;;. In appendix A we will show that conditions (29) are satisfied for all values
of h > Oifand only ifa; = 0V i. Now we can separate integrals (25) and (26) into two parts:
one is given by the integration in a small regibraround the stationary poiat (the leading
contribution) and the other is the integration over the complement dfhe latter vanishes
for 8 — oco. We obtain

M, (h) = / Reldh s @)] 11— Y (L4 H +ia)! +0(1/f) (30)
0 r kj
1 2
1= 2 [ Reldupsal| 51 2|+ osm)

(31)
where I is the region around the saddle pout in which Reexp(iSg;(«))) > 0 and
7 = fr Re[dug »(a)]. Here we have exploited the fact that, since the measugg, @)
is real and positive at the stationary painfthe imaginary part of dg , («) gives a subleading
contribution to integrals (30) and (31). Naw (k) and 1 are real quantities so we have

1 .
M, (h) = / Refdusn ()] Re[Z(L +H+ la)kjl} +0(1/B) (32)
kj

O.V

1 n L1 h?
1= -7 Re[d;uﬁh(a)]Re ﬂNO,rTr(L+H+Ia) + »

Y (L+H+ ia),.—f] +0(1/B).
ij
(33)
As for (c) we introduce on a finite graph the following inequalities which will be proven
in appendix B exploiting the boundedness and the non-negativity of the Laplacian operator:

Re[h Z(L +H+ ia)iﬂ > Re[hz Z(L +H+ ioz)i_jz] (34)

Re[Tr(L +H+i) Y <Tr(L+H)™. (35)
In (32) and (33) the measure is positive definite and therefore we can use (34) to compare
integrals (32) and (33), obtaining

1 h
M, () > f Re[dizg(@)] Re[ N

2

o,r

D (L+H+ ia)if] +0(1/B)

i

_op) - = / Reldiy (@] Re[ -

o,r

Tr(L+H + ia)l]. (36)
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Using (35), we obtain foM, (h) the following inequality:

M.(h) >1—o0(1/B) — Tr(L + H) . (37)

o,r

Inequality (37) holds on the finite subgrag,. and at this step we can take the thermodynamic
limit, letting r — oo:

lim M,(h) > 1-0(1/B) - %W(L +H)™L. (38)

Finally, we consider the limit — 0 and, exploiting properties (14) of pure TOA graphs, we
obtain

. v
lllanOM(h) >1- E —0o(1/8). (39)

This inequality gives the lower magnetization bound for pure TOA graphs.

5. The mixed TOA case

Let us now consider am® (z) model defined on a mixed TOA graph. In this case the
graphg can be decomposed into a pure TOA subgré&pltherefore satisfying the infrared
boundedness condition (14), and its complem&nivhich is a ROA graph. Exploiting the
property|d(S, S)| = 0, in appendix C is proven for the free energy per gitiat

f=18Ifs+I8|fs (40)
wherefs is the free energy of thé (n) model defined on the graghby the interaction matrix:

Jii if (i,j)eSandi,jeS
Y It { 0 otherwise (41)
and fs is the analogous quantity defined sh Equation (40) is very general and it is
fundamental to show that all the thermodynamic properties of models defined on subgraphs
separated by zero measure boundary are completely independent. From (40) we obtain for the
magnetization

af s & 0fs s
M) = —— =—|S|—=— — |S| == = |S|Ms +|S|Ms 42
(h) o IIBhIIahllslls (42)

whereM; and Mg are the magnetizations of the models defined@ndS. From Griffith’s
inequalities [12] we have thdt; > 0 and then

M(h) = |SIMs. (43)
Now, M is the magnetization of a@ (n) model defined on a pure TOA graph and therefore

the inequality (39) holds. We then obtain

fim M) > 18]~ =~ 0(1/) (44)
SinceS is a positive measure subgraph, equation (44) proves the lower bourd/grfor a
generic TOA graph.
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Appendix A. The saddle-point condition

Let us now prove that the saddle-point conditions (29) are satisfied fot eabhif o, = O Vk.
Herei € S, , andL;; is the restriction of the Laplacian to the Van Hove sph&re
Taking in (29) the derivative with respegt, we obtain

i —ih?Y (L +H +i@); "8, (L + H +ia),} =0 (A1)
klmj

where we used the fact thé€c;,,)/0a; = 8;;6,i. Then we have
2
= h? Z(L +H+ia)g (L +H +ia);' = <h Z(L +H+ i&),;,.1> . (A2)
kj k
Taking the square roots:
j:l:hZ(L+H+i&)k‘il (A3)
k
since only the choice of the sign + in each equation gives a solution withseak obtain
1=h) (L+H+ia)" (A4)
k
Now (A4) must hold for all € S, , so we have that condition (A4) is equivalent to
Z(L +ia+H)j=h Z(L + H +ia) ML+ H +ia);; VjeS,,. (A5)
i ki
Since) , L;; =0,) ;,a;; =a; and)_;, H;; = h, we have

h+ia;=hY &;=h VjeS,,. (A6)
k

Therefore, equation (29) is satisfied for aif and only if &; = 0 for all j. This proves the
saddle-point condition.

Appendix B. Inequalities

Here, we give the full proof of inequalities (34) and (35). More generally we will show that the
following inequalities hold for any finite graphs, with; = hé;;, h > 0,0 = ; 6;j, o; € R
and¢; € RVi:

Re<§ $i(L+H+ ia),-,»1q>,-) S G(L+H) o <h 7ty et (B7)
ij i
Im(§ 61 (L + H +ia); ¢,> <3 GiL+H)e, (B8)
ij
Re( E (L+H+ Ioz)lj ¢>,¢,> < Re<h E (L+H+ ia)ijlqbiqﬁ_,-) (B9)
ij

0<h Yy ¢i(L+H—ia)  (L+H +ia)'¢; < Re(Z oi(L+H + ia);jl¢j>. (B10)
ikj ij
When evaluating (B9) fog; = 1Vi we obtain inequality (34), while by considering (B7)
with ¢; = 1 fori = k and¢; = 0 fori # k, we have

Re(L + H +ia)t < (L+ H) L
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Now we can sum this expression over all possibibtaining inequality (35):

Re(Tr(L +H +ie)™) = Y "Re(L+H +ie) <Y (L+H)gt =Tr(L+H)™.
k k

In order to prove inequalities (B7)—(B10) we firstintroduceah@imensional space given
by vectors(¢| = (¢4, ..., ¢n) and|p) = (¢, ..., ¢n)" with scalar product

Bly) = qunm. (B11)

The matriced., A, h anda are operator on this space. Since the mdtrig diagonalizable by
a real transformation, and its spectruiB positive: 0< I < Imayx it can be proven [13] that it
exist a real operataB which satisfies the following:

B'(L+H)B =1 B'aB =c (B12)

wherec is a real diagonal operatot;{ = c;4;;) and/ is the identity operator. Furthermore,
we have

(L+H+ia0)™ = B +ic) 1B (L+H)™*= BB (B13)
g = 1
BBl = : (B14)
where
B'B
|B'B| = SUIO(¢>| |¢>>.
o (@lo)

Properties (B13) directly follow from (B12). Therefore, itis easy to obtain the exact expression
for B:

B =TAT’

where T is the orthogonal transformation that diagonalize A is the transformation
(1//1 + )81, Wherel, is the eigenvalue of. relative to the eigenvectdr, finally 7" is the
orthogonal operator that diagonalize the symmetric matfiXa T A. B is not an orthogonal
transformation but its norm can be computed, proving (B14):

t 2
1B B — sup'PIBBIO) _  @lA%9) 1
o B19) ol (Gle) K

Let us consider the produ@h|(L+H +ia) ~1|¢). Exploiting property (B13) and inequality
(1+c¢»)~1 < 1we have
Re(lp(L + H +ia) '|¢) = Re(¢|B(1 +ic) ' B'|¢)
= (pl(BRe(1 +ic) ' B")|¢)
= (p|B(L+c>)'B'|¢)
< (¢|BB'|¢).

Now since 0< (¢|B(1 +c?)"'B'|¢), (¢|(L + H)!|¢) = (¢|BB'|$) (equation (B13)) and
(¢|BB'|¢) < h~1(¢|¢) (equation (B14)), we obtain

0 < Re(p(L + H +ia) o) < (pI(L+ H) o) < hHglg)
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which corresponds to (B7). In an analogous way, for the imaginary part we obtain (B8):
[IM{¢(L + H +ia) )| = |(¢|Be(1 +c*) " B'|g)]|
< (@|Ble|(1+c» " B'|¢)
< 3(¢|BB'|9)
< 3(@IL+H) o)
where we used the inequalify |(1 +c?) 7 < % For the proof of (B9) we have
Re(¢|h?(L + H +ia)2|¢) = Reh?(¢|B(1 +ic) *B'B(1 +ic)1B'|¢)
= h*(¢|B(Re(1 +ic) ) B' B(Re(1 +ic) ") B'|¢)
—h*(¢|BAM(L +ic) HB'B(M(L +ic) ™) B'|¢)
h?(¢|B(Re(1 +ic) ") B' B(Re(1 +ic) ™) B |¢)
h(¢|B(Re(1 +ic) M) (Re(1 +ic) ™) B'|¢)
h(¢|B(1+c*)?B'|¢)
h(¢|B(1 +c*)'B'|p) = h(¢|(L + H) *|¢)

where we used properties (B13), (B14) aid+c?)~2? < (1 +¢?)~L. Finally, to obtain (B10)
we have

0< h(p|(L+H —ia) Y (L+H +ia) Yp) = h(¢p|B(L —ic) *B'B(1 +ic) 1B'|¢)
< (¢IBAL—ic) M (L +ic) 'B'|¢)
< (¢|BAL+c*) ' B'|¢) = Re(p|(L + H +ia) ")

and this completes the proof of inequalities (B7)—(B10).

Appendix C. Separability and the additivity of the free energy

In this last appendix we will prove the property (40) for the free energy of&m model
when the complementary subgraghandS are connected by a zero-measure bobdér, S).
From the definition of the free energy (19) we have that

—|S|fs — |S|fs = lim
o = 1815 = 1815 = lim 2o

x In [ Tlics,, doi 807 — D exp(—B(Hys +H, 5+ Y. yes, nns.$ Jiioi )
f HieS,,A,- do; 8(3i2 —Dexp(—B(Hrs +H,3))

. 1 '
= lim N In<exp<—ﬂ > Jijoi -aj>> (C15)

(i, )€8,,,N3(S,8)

whereH, s and’, ; are the restrictions df{ to the intersections aof, , with S andS and
() is an average taken with respect the statistical weight-eggH, s + H, s)). Since the
symmetry grougD (n) is compact fo; - ;)| < 1) we have that

—supJi [0S, Sl < Y. Jyoi -0 < SupJy|a(S, S, (C16)
G.J) (. )€8,M0(S.8) (.9

where|d(S, S)|, is the number of links 08 (S, S) which belong to the Van Hove sphesg, ..
Now with (C15) and (C16) we obtain

lim

r—oo f3

In(ef‘ SUR:. ) J:/IB(S,S)\,)

S _ . 1
|n(e—ﬂ5URi.j) Ji/la(S,S)\r) < fo—IS|fs — |S|f5~ < lim
o,r r—0o0 IBNo,r

(C17)
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and then

, (S, S)|, < . (S, S)|,

iim —gsups, 2SN s — 18175 < lim psups, LSS (C18)
r—00 ) No,r F—00 ) No’r

Since the measure of the boundags, S) is zero we have that lim, ., |3(S, S)|,/N(,,, =0

and therefore we obtaif; — |S| fs — |S| fs = 0, that is equation (40). Notice that this result

is very general and it exploits only the fact that the symmetry group is compact and that the
interactions are bounded.
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